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1 Cramér’s Theorem and Recovering Entropy as the Expo-
nent

1.1 Cramér’s theorem

We have a σ-finite measure space (M,λ), and a measurable map ϕ : M → X, where
X = Y ∗ is a locally convex space with the weak* topology. We found that

λ×n

({
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

})
= en·s(U)+o(n),

where s(U) = supx∈U s(x) for some point function s which is upper semicontinuous and
concave. To study s, we have introduced Fenchel-Legendre duality:

s(x) = inf
y
s∗(y)− 〈y, x〉,

where
s∗(y) := sup

x
s(x) + 〈y, x〉

is sometimes known as the convex conjugate of s. Last time, we proved a formula: if
s(x) <∞ for all n, then

s∗(y) = log

∫
e〈y,ϕ〉 dλ.

Remark 1.1. In the proof of this integral formula, to show (≤), we showed that s(x) +
〈y, x〉 ≤ RHS for all x, y. For this, given ε > 0, we found U 3 x such that

λ×n({· · · ∈ U}) ≤ eεn+o(n)
(∫

e〈y,ϕ〉 dλ

)n
.

This part of the proof does not require that s is finite. In fact, it gives a way to prove
s(U) <∞ and hence s(x) <∞. So if there is some y ∈ Y such that

∫
e〈y,ϕ〉 dλ <∞, then

s < ∞ and s∗ is as in the theorem. The mantra is that s < ∞ everywhere iff s∗ < ∞
somewhere.
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A special case is when (M,λ) is a probability space and X = Rd. In this case, we get
the following version of the theorem we proved before:

Theorem 1.1 (Cramér, 1937). Let ξ1, ξ2, . . . are i.i.d. random vectors in Rd. Then

P

(
1

n

n∑
i=1

ξ ∈ U

)
= exp

(
n · sup

x∈U
s(x) + o(n)

)
,

where
s(x) = inf

y∈Rd
Λ(y)− 〈y, x〉,

and
Λ(y) = logM(y) = logE[e〈y,ξ1〉]

is the cumulant generating function.

In a number of texts, our s is denoted by −I (so the inf becomes a sup, etc.).

1.2 Connection to the Kullback-Leibler divergence in the case of empir-
ical distributions

Let K be a compact metric space, λ be a finite Borel measure, X = M(K) be the space
of measures on K (equal to C(K)∗ by Riesz representation), and ϕ(p) = δp. In this case,
1
n

∑n
i=1 ϕ(pi) is the empirical distribution of (p1, . . . , pn).

Theorem 1.2. In this setting, s(µ) = −∞ unless µ ∈ P (K) and µ� λ, and in that case,

s(µ) = −
∫
dµ

dλ
log

dµ

dλ
dλ.

We will denote the right hand side by s̃(µ) until we have proven the theorem; that way,
the proof is to show that s = s̃.

Remark 1.2. Note that

s̃(µ) =

∫
η

(
dµ

dλ

)
dη, η(t) =

{
−t log t t > 0

0 t = 0.

If |η(dµdλ )| ∈ L1(λ), then s̃(µ) > −∞. Otherwise, we set s(µ) := −∞.

Remark 1.3. Here is an alternative formula that will be useful:

s̃(µ) = −
∫

log
dµ

dλ
dµ.

This formula is useful, but it is a little harder to see the natural −∞ convention with this
version.
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Here are 2 special cases:

Example 1.1. Let K be finite with λ being counting measure. Then dµ
dλ (a) = µ({a}), and

so
s̃(µ) = −

∑
a

µ({a}) logµ({a}) = H(µ)

is the Shannon entropy.

Example 1.2. If λ(K) = 1, then

−s̃(µ) =

{∫ dµ
dλ log dµ

dλ dλ

+∞ in the cases described above

is called the Kullback-Leibler divergence. The standard notation for this is D(µ‖λ).

Lemma 1.1. If λ(K) = 1, then D(µ‖λ) ≥ 0, with equality if µ = λ.

Proof.

D(µ‖λ) =

∫
dµ

dλ
log

dµ

dλ

=

∫
−η
(
dµ

dλ

)
dλ

−η is strictly concave, so using Jensen’s inequality gives

− η
(∫

dµ

dλ
dλ

)
= −η(1)

= 1 log 1

= 0.

We get equality iff dµ
dλ is constant for λ-a.e., that is, iff µ = λ.

Let’s prove the theorem:

Proof. We want to prove that s = s̃. Using the expresion for s in terms of the Fenchel-
Legendre transform and using the integral formula, we want to show that

inf

{
log

∫
ef(p) dλ(p)− 〈f, µ〉 : f ∈ C(K)

}
= s̃(µ).

This is known as Gibbs’ variational formula.
(≥): We want

log

∫
ef dλ− 〈f, µ〉 ≥ −

∫
dµ

dλ
log

dµ

dλ
dλ.
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The key object is

dµf (p) =
ef(p)

Z(f)
dλ(p), Z(f) =

∫
ef dλ,

which is sometimes called the Gibbs measure of f with respect to λ. Observe that

λ� µf and µf � λ, so if µ� λ, then µ� µf , then dµ
dλ = dµ

dµf

dµf
dλ , and so

s̃(µ) = −
∫

log
dµ

dλ
dµ

= −
∫

log
dµ

dµf
dµ−

∫
log

dµf
dλ

dµ

= −D(µ‖µf )−
∫

(f − logZ) dµ

= −D(µ‖µf ) + {logZ − 〈f, µ〉} .

Rearrange this to get

logZ − 〈f, µ〉 = s̃(µ) +D(µ‖µf ) ≥ s̃(µ),

with equality iff µ = µf .
(≤): We already know this if µ = µf for some f ∈ C(K). The summary of the rest of

the proof is “such measures µf are dense as f varies.” In more detail:

(a) inf{log
∫
ef dλ− 〈f, µ〉 : f ∈ C(K)} has the same value if we enlarge C(K) to B(K),

the bounded Borel functions. This is because given λ and µ, C(K) is dense in
L1(λ+ µ), so for all g ∈ B(K) (all uniformly bounded), there is some (fn)n in C(K)
with fn → g in L1(λ) and L1(µ). Then 〈fn, µ〉 → 〈g, µ〉, and

∫
efn dλ→

∫
eg dλ.

(b) Now suppose ����µ� λ. Then there is an A such that λ(A) = 0 and µ(A) > 0. Let
g = c1A ∈ B(K). This gives

log

∫
eg dλ− 〈g, µ〉 = 0− cµ(A)→ −∞

as c→ +∞. So inf{· · · } = −∞, as required.

(c) Lastly, suppose dµ = ρ dλ. If ρ = eg with g ∈ B(K), we are done by the previoius
calculation. Otherwise, choose (gn)n in B(K) such that

egn → ρ

{
from below if ρ > 1

from above if ρ ≤ 1.

Now show that:
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•
log

∫
{ρ≤1}

egn dλ→ log

∫
ρ dλ = log 1 = 0,

•
log

∫
{ρ>1}

egn dλ→ log

∫
ρ dλ = log 1 = 0,

•
〈gn, µ〉 → 〈log ρ, µ〉 = s̃(µ).
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