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1 Cramér’s Theorem and Recovering Entropy as the Expo-
nent

1.1 Cramér’s theorem

We have a o-finite measure space (M, ), and a measurable map ¢ : M — X, where
X =Y"* is a locally convex space with the weak™ topology. We found that

1 n
xn n. - . — ns(U)+o(n)
A ({p eM": - ;_1 o(pi) € U}) =e ;

where s(U) = sup,¢p s(x) for some point function s which is upper semicontinuous and
concave. To study s, we have introduced Fenchel-Legendre duality:

s(z) = ir;f s*(y) — (Y, 2),

where
s*(y) == sups(z) + (y, )

x
is sometimes known as the convex conjugate of s. Last time, we proved a formula: if
s(z) < oo for all n, then

s*(y) = log/e<y"p> d\.

Remark 1.1. In the proof of this integral formula, to show (<), we showed that s(z) +
(y,x) < RHS for all z,y. For this, given € > 0, we found U > z such that

NP e U}) < eentoln) (/ elY:%) dA) _

This part of the proof does not require that s is finite. In fact, it gives a way to prove
s(U) < oo and hence s(z) < co. So if there is some y € Y such that [e¥#) d\ < oo, then
s < oo and s* is as in the theorem. The mantra is that s < oo everywhere iff s* < oo
somewhere.



A special case is when (M, \) is a probability space and X = R?. In this case, we get
the following version of the theorem we proved before:

Theorem 1.1 (Cramér, 1937). Let £1,&, ... are i.i.d. random vectors in R, Then
1 n
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[ ) e el

where

and
A(y) = log M(y) = log B[]

is the cumulant generating function.
In a number of texts, our s is denoted by —I (so the inf becomes a sup, etc.).
1.2 Connection to the Kullback-Leibler divergence in the case of empir-
ical distributions

Let K be a compact metric space, A be a finite Borel measure, X = M (K) be the space
of measures on K (equal to C'(K)* by Riesz representation), and ¢(p) = 6,. In this case,
LS @(p;) is the empirical distribution of (py, ..., pn).

Theorem 1.2. In this setting, s(pu) = —oo unless p € P(K) and p < X, and in that case,

dp . dp
s(p) = ™ log LRy dA.

We will denote the right hand side by s(u) until we have proven the theorem; that way,
the proof is to show that s = s.

Remark 1.2. Note that

'g(u)z/ @‘;) dn, n(t)z{;tlogt Zg

If |77( £)| € L*(N), then $(u) > —oo. Otherwise, we set s(u) := —oo.

Remark 1.3. Here is an alternative formula that will be useful:
~ du
1 d
s(p) = / og — d.

This formula is useful, but it is a little harder to see the natural —oo convention with this
version.



Here are 2 special cases:

Example 1.1. Let K be finite with A being counting measure. Then j—ﬁ(a) = p({a}), and
S0

8(p) ==Y n({a})logu({a}) = H(p)

is the Shannon entropy.
Example 1.2. If A\(K) =1, then
(ke
+00 in the cases described above
is called the Kullback-Leibler divergence. The standard notation for this is D(ul|A).
Lemma 1.1. If \(K) =1, then D(u||A) > 0, with equality if = A.
Proof.

du du
Dy = [ Frog

dp
= [ -—n|-<|d\r
J=()
—n is strictly concave, so using Jensen’s inequality gives
dp
— —dA
! (/ ax )
=—n(1)
=1llogl
=0.
We get equality iff ‘;—f\‘ is constant for A-a.e., that is, iff u = A. O
Let’s prove the theorem:

Proof. We want to prove that s = 5. Using the expresion for s in terms of the Fenchel-
Legendre transform and using the integral formula, we want to show that

nt fiog [\t~ (1.0 1 € O | =500,

This is known as Gibbs’ variational formula.
(>): We want

d d
Fon - _ i m
log/e A\ — (f,pu) > /d)\ log 5\ dA.
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The key object is
ef (@) ;
o) = G ). ()= [ ax

which is sometimes called the Gibbs measure of f with respect to A. Observe that

A< ppand pp < A, soif p <A, then p < g, then le—f( = %ZL{, and so

—~Diuluy) = [ (£~ 1o Z)du
= —D(pllps) + {log Z — (f, 1)} -

Rearrange this to get

log Z — (f, 1) = () + D(ullpey) > s(p),

with equality iff o = .
(<): We already know this if p1 = ps for some f € C(K). The summary of the rest of
the proof is “such measures py are dense as f varies.” In more detail:

(a) inf{log [ e/ d\— (f,n) : f € C(K)} has the same value if we enlarge C(K) to B(K),
the bounded Borel functions. This is because given A and p, C(K) is dense in
LY(\+ p), so for all g € B(K) (all uniformly bounded), there is some (f,), in C(K)
with f, — g in L'(X) and L(x). Then (fn, 1) — (g, p), and [e/» dX — [e9dA.

(b) Now suppose p<X. Then there is an A such that \(A) = 0 and p(A) > 0. Let
g =cly € B(K). This gives

log/egdk— (g, 1) =0—cu(A) - —o0

as ¢ — +o00. So inf{---} = —o0, as required.

(c¢) Lastly, suppose du = pd\. If p = €9 with g € B(K), we are done by the previoius
calculation. Otherwise, choose (g,)n in B(K) such that

P from below if p > 1
e n
P from above if p < 1.

Now show that:



log/ egnd)\—>log/pd)\:log1:0,

{p=1}

log/ eg"d/\—>log/pd)\:log1:0,
{p>1}

(gn, 1) — (log p, 1) = 3(p).
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