Math 254A Lecture 9 Notes

Daniel Raban

April 16, 2021

1 Cramér's Theorem and Recovering Entropy as the Exponent

1.1 Cramér's theorem

We have a σ -finite measure space (M, λ) , and a measurable map $\varphi : M \to X$, where $X = Y^*$ is a locally convex space with the weak^{*} topology. We found that

$$\lambda^{\times n}\left(\left\{p\in M^n: \frac{1}{n}\sum_{i=1}^n\varphi(p_i)\in U\right\}\right) = e^{n\cdot s(U)+o(n)},$$

where $s(U) = \sup_{x \in U} s(x)$ for some point function s which is upper semicontinuous and concave. To study s, we have introduced Fenchel-Legendre duality:

$$s(x) = \inf_{y} s^{*}(y) - \langle y, x \rangle,$$

where

$$s^*(y) := \sup_x s(x) + \langle y, x \rangle$$

is sometimes known as the **convex conjugate** of s. Last time, we proved a formula: if $s(x) < \infty$ for all n, then

$$s^*(y) = \log \int e^{\langle y, \varphi \rangle} d\lambda.$$

Remark 1.1. In the proof of this integral formula, to show (\leq) , we showed that $s(x) + \langle y, x \rangle \leq \text{RHS}$ for all x, y. For this, given $\varepsilon > 0$, we found $U \ni x$ such that

$$\lambda^{\times n}(\{\dots \in U\}) \le e^{\varepsilon n + o(n)} \left(\int e^{\langle y, \varphi \rangle} d\lambda\right)^n.$$

This part of the proof does not require that s is finite. In fact, it gives a way to prove $s(U) < \infty$ and hence $s(x) < \infty$. So if there is some $y \in Y$ such that $\int e^{\langle y, \varphi \rangle} d\lambda < \infty$, then $s < \infty$ and s^* is as in the theorem. The mantra is that $s < \infty$ everywhere iff $s^* < \infty$ somewhere.

A special case is when (M, λ) is a probability space and $X = \mathbb{R}^d$. In this case, we get the following version of the theorem we proved before:

Theorem 1.1 (Cramér, 1937). Let ξ_1, ξ_2, \ldots are *i.i.d.* random vectors in \mathbb{R}^d . Then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}\xi\in U\right) = \exp\left(n\cdot\sup_{x\in U}s(x) + o(n)\right),$$

where

$$s(x) = \inf_{y \in \mathbb{R}^d} \Lambda(y) - \langle y, x \rangle,$$

and

$$\Lambda(y) = \log M(y) = \log \mathbb{E}[e^{\langle y, \xi_1 \rangle}]$$

is the cumulant generating function.

In a number of texts, our s is denoted by -I (so the inf becomes a sup, etc.).

1.2 Connection to the Kullback-Leibler divergence in the case of empirical distributions

Let K be a compact metric space, λ be a finite Borel measure, X = M(K) be the space of measures on K (equal to $C(K)^*$ by Riesz representation), and $\varphi(p) = \delta_p$. In this case, $\frac{1}{n} \sum_{i=1}^{n} \varphi(p_i)$ is the empirical distribution of (p_1, \ldots, p_n) .

Theorem 1.2. In this setting, $s(\mu) = -\infty$ unless $\mu \in P(K)$ and $\mu \ll \lambda$, and in that case,

$$s(\mu) = -\int \frac{d\mu}{d\lambda} \log \frac{d\mu}{d\lambda} d\lambda.$$

We will denote the right hand side by $\tilde{s}(\mu)$ until we have proven the theorem; that way, the proof is to show that $s = \tilde{s}$.

Remark 1.2. Note that

$$\widetilde{s}(\mu) = \int \eta \left(\frac{d\mu}{d\lambda}\right) d\eta, \qquad \eta(t) = \begin{cases} -t\log t & t > 0\\ 0 & t = 0. \end{cases}$$

If $|\eta(\frac{d\mu}{d\lambda})| \in L^1(\lambda)$, then $\tilde{s}(\mu) > -\infty$. Otherwise, we set $s(\mu) := -\infty$.

Remark 1.3. Here is an alternative formula that will be useful:

$$\widetilde{s}(\mu) = -\int \log \frac{d\mu}{d\lambda} \, d\mu.$$

This formula is useful, but it is a little harder to see the natural $-\infty$ convention with this version.

Here are 2 special cases:

Example 1.1. Let K be finite with λ being counting measure. Then $\frac{d\mu}{d\lambda}(a) = \mu(\{a\})$, and so

$$\widetilde{s}(\mu) = -\sum_{a} \mu(\{a\}) \log \mu(\{a\}) = H(\mu)$$

is the Shannon entropy.

Example 1.2. If $\lambda(K) = 1$, then

$$-\widetilde{s}(\mu) = \begin{cases} \int \frac{d\mu}{d\lambda} \log \frac{d\mu}{d\lambda} \, d\lambda \\ +\infty & \text{in the cases described above} \end{cases}$$

is called the **Kullback-Leibler divergence**. The standard notation for this is $D(\mu \| \lambda)$.

Lemma 1.1. If $\lambda(K) = 1$, then $D(\mu \| \lambda) \ge 0$, with equality if $\mu = \lambda$.

Proof.

$$D(\mu \| \lambda) = \int \frac{d\mu}{d\lambda} \log \frac{d\mu}{d\lambda}$$
$$= \int -\eta \left(\frac{d\mu}{d\lambda}\right) d\lambda$$

 $-\eta$ is strictly concave, so using Jensen's inequality gives

$$-\eta \left(\int \frac{d\mu}{d\lambda} d\lambda \right)$$
$$= -\eta(1)$$
$$= 1 \log 1$$
$$= 0.$$

We get equality iff $\frac{d\mu}{d\lambda}$ is constant for λ -a.e., that is, iff $\mu = \lambda$.

Let's prove the theorem:

Proof. We want to prove that $s = \tilde{s}$. Using the expression for s in terms of the Fenchel-Legendre transform and using the integral formula, we want to show that

$$\inf\left\{\log\int e^{f(p)}\,d\lambda(p)-\langle f,\mu\rangle:f\in C(K)\right\}=\widetilde{s}(\mu).$$

This is known as Gibbs' variational formula.

 (\geq) : We want

$$\log \int e^f d\lambda - \langle f, \mu \rangle \ge -\int \frac{d\mu}{d\lambda} \log \frac{d\mu}{d\lambda} d\lambda.$$

The key object is

$$d\mu_f(p) = \frac{e^{f(p)}}{Z(f)} d\lambda(p), \qquad Z(f) = \int e^f d\lambda,$$

which is sometimes called the **Gibbs measure** of f with respect to λ . Observe that $\lambda \ll \mu_f$ and $\mu_f \ll \lambda$, so if $\mu \ll \lambda$, then $\mu \ll \mu_f$, then $\frac{d\mu}{d\lambda} = \frac{d\mu}{d\mu_f} \frac{d\mu_f}{d\lambda}$, and so

$$\widetilde{s}(\mu) = -\int \log \frac{d\mu}{d\lambda} d\mu$$

= $-\int \log \frac{d\mu}{d\mu_f} d\mu - \int \log \frac{d\mu_f}{d\lambda} d\mu$
= $-D(\mu \| \mu_f) - \int (f - \log Z) d\mu$
= $-D(\mu \| \mu_f) + \{\log Z - \langle f, \mu \rangle\}.$

Rearrange this to get

$$\log Z - \langle f, \mu \rangle = \widetilde{s}(\mu) + D(\mu \| \mu_f) \ge \widetilde{s}(\mu),$$

with equality iff $\mu = \mu_f$.

 (\leq) : We already know this if $\mu = \mu_f$ for some $f \in C(K)$. The summary of the rest of the proof is "such measures μ_f are dense as f varies." In more detail:

- (a) $\inf\{\log \int e^f d\lambda \langle f, \mu \rangle : f \in C(K)\}$ has the same value if we enlarge C(K) to B(K), the bounded Borel functions. This is because given λ and μ , C(K) is dense in $L^1(\lambda + \mu)$, so for all $g \in B(K)$ (all uniformly bounded), there is some $(f_n)_n$ in C(K)with $f_n \to g$ in $L^1(\lambda)$ and $L^1(\mu)$. Then $\langle f_n, \mu \rangle \to \langle g, \mu \rangle$, and $\int e^{f_n} d\lambda \to \int e^g d\lambda$.
- (b) Now suppose $\mu \ll \lambda$. Then there is an A such that $\lambda(A) = 0$ and $\mu(A) > 0$. Let $g = c \mathbb{1}_A \in B(K)$. This gives

$$\log \int e^g d\lambda - \langle g, \mu \rangle = 0 - c\mu(A) \to -\infty$$

as $c \to +\infty$. So $\inf\{\cdots\} = -\infty$, as required.

(c) Lastly, suppose $d\mu = \rho d\lambda$. If $\rho = e^g$ with $g \in B(K)$, we are done by the previous calculation. Otherwise, choose $(g_n)_n$ in B(K) such that

$$e^{g_n} \to \rho \begin{cases} \text{from below} & \text{if } \rho > 1 \\ \text{from above} & \text{if } \rho \le 1. \end{cases}$$

Now show that:

•

$$\log \int_{\{\rho \le 1\}} e^{g_n} d\lambda \to \log \int \rho \, d\lambda = \log 1 = 0,$$
•

$$\log \int_{\{\rho > 1\}} e^{g_n} d\lambda \to \log \int \rho \, d\lambda = \log 1 = 0,$$
•
•

$$\langle g_n, \mu \rangle \to \langle \log \rho, \mu \rangle = \tilde{s}(\mu).$$